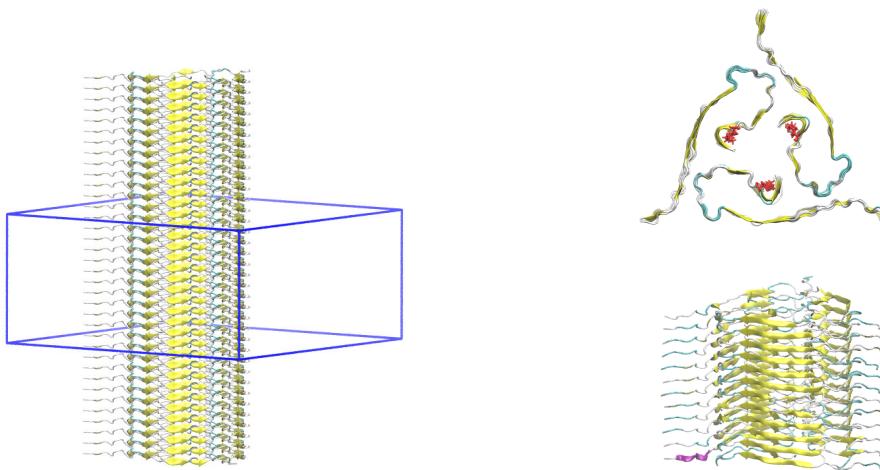


Role of N-Terminal Residues for Structural Stability of Triangular $\text{A}\beta_{40}$ Fibrillar Oligomers

Christian A. Söldner, Heinrich Sticht, Anselm H. C. Horn


Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg

Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder and the main cause for dementia in industrial nations. One hallmark of AD is the development of senile plaque deposits in the brain that consist primarily of fibrillar amyloid β ($\text{A}\beta$) peptides. $\text{A}\beta$ is a short peptide comprising 40 to 42 residues, but nevertheless exhibits a vast conformational variability and a plethora of oligomeric states, which makes experimental studies about its structure and aggregation rather challenging.

Recently, Lu et al. published a solid state NMR structure of an $\text{A}\beta_{1-40}$ fibril isolated from an AD patient (PDB code 2M4J)[1]. The structure shows three-fold symmetry around the fibril axis with a central water channel and is thus markedly different from $\text{A}\beta_{1-42}$ fibril structures. Previously, we have investigated the stability of fibrillar $\text{A}\beta_{42}$ oligomers of different size by means of molecular dynamics (MD) simulations leading to a model for longitudinal and lateral fibril growth [2, 3].

Here, we present all-atom MD simulations in explicit water based on the patient-derived $\text{A}\beta_{40}$ fibril to elucidate how its conformational stability depends on the oligomer size. An infinite $\text{A}\beta$ fibril was investigated as well to study the boundary effects of the finite oligomers.

Moreover, it is known from experiment that several $\text{A}\beta$ species of different N-terminal length exist in vivo affecting the peptide's aggregation behaviour. We thus investigated the influence of the first eight $\text{A}\beta$ residues upon the structure and dynamics of the fibrillar oligomers and the infinite fibril of $\text{A}\beta_{40}$.

References

- [1] J. Lu, W. Qiang, W. Yau, C. D. Schwieters, S. C. Meredith, R. Tycko. "Molecular structure of β -amyloid fibrils in Alzheimer's disease brain tissue". *Cell*, **2013**, *154*, 1257-1268.
- [2] A. H. C. Horn, H. Sticht. "Conformational stability of fibrillar amyloid- β oligomers via protofilament pair formation – a systematic computational study". *J Phys Chem B*, **2013**, *114*, 2219-2226.
- [3] A. Kahler, H. Sticht, A. H. C. Horn. "Amyloid- β 42 oligomer structures from fibrils: a systematic molecular dynamics study". *PLoS One*, **2010**, *8*, e70521.